Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita.

نویسندگان

  • S Brownlow
  • R Webster
  • R Croxen
  • M Brydson
  • B Neville
  • J P Lin
  • A Vincent
  • J Newsom-Davis
  • D Beeson
چکیده

Limitation of movement during fetal development may lead to multiple joint contractures in the neonate, termed arthrogryposis multiplex congenita. Neuromuscular disorders are among the many different causes of reduced fetal movement. Many congenital myasthenic syndromes (CMSs) are due to mutations of the adult-specific epsilon subunit of the acetylcholine receptor (AChR), and, thus, functional deficits do not arise until late in gestation. However, an earlier effect on the fetus might be predicted with some defects of other AChR subunits. We studied a child who presented at birth with joint contractures and was subsequently found to have a CMS. Mutational screening revealed heteroallelic mutation within the AChR delta subunit gene, delta 756ins2 and delta E59K. Expression studies demonstrate that delta 756ins2 is a null mutation. By contrast, both fetal and adult AChR containing delta E59K have shorter than normal channel activations that predict fast decay of endplate currents. Thus, delta E59K causes dysfunction of fetal as well as the adult AChR and would explain the presence of joint contractures on the basis of reduced fetal movement. This is the first report of the association of AChR gene mutations with arthrogryposis multiplex congenita. It is probable that mutations that severely disrupt function of fetal AChR will underlie additional cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extracellular Linker of Muscle Acetylcholine Receptor Channels Is a Gating Control Element

We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2-M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the alpha subunit (alphaS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydro...

متن کامل

Congenital Myasthenic Syndrome Caused by Decreased Agonist Binding Affinity Due to a Mutation in the Acetylcholine Receptor ε Subunit

We describe the genetic and kinetic defects for a low-affinity fast channel disease of the acetylcholine receptor (AChR) that causes a myasthenic syndrome. In two unrelated patients with very small miniature end plate (EP) potentials, but with normal EP AChR density and normal EP ultrastructure, patch-clamp studies demonstrated infrequent AChR channel events, diminished channel reopenings durin...

متن کامل

Novel delta subunit mutation in slow-channel syndrome causes severe weakness by novel mechanisms.

We investigated the basis for a novel form of the slow-channel congenital myasthenic syndrome presenting in infancy in a single individual as progressive weakness and impaired neuromuscular transmission without overt degeneration of the motor endplate. Prolonged low-amplitude synaptic currents in biopsied anconeus muscle at 9 years of age suggested a kinetic disorder of the muscle acetylcholine...

متن کامل

Congenital myasthenic syndromes: recent advances.

Congenital myasthenic syndromes (CMS) can arise from presynaptic, synaptic, or postsynaptic defects. Mutations of the acetylcholine receptor (AChR) that increase or decrease the synaptic response to acetylcholine (ACh) are a common cause of the postsynaptic CMS. An increased response occurs in the slow-channel syndromes. Here, dominant mutations in different AChR subunits and in different domai...

متن کامل

Congenital myasthenic syndromes: progress over the past decade.

Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic basal lamina, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A basal lamina CMS is caused by mutations in the colla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2001